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Introduction

In description of the preequilibrium decay
one-component models are used nearly exclusively.
A consistent derivation of the effective one-
component exciton model from the two component
formulation was given by Gupta /1/. It was shown
that, in a one-component model, transitions in-
consistent with the assumption of the two-body
nature of the equilibration process are included,
and that this can be compensated by _modification

of the averaged matrix element |M|° without af-
fecting the cross section and spectra pred-
ictions. However, it is only valid if the state

densities for equivalent proton and neutron con-
figurations are the same. OQur recent shell-model
calculations /2,3/ indicate that the assumption
of an equal state density for neutron and proton
configurations, that underlies the model by Gupta
/1/, usually does not hold. To account for dif-
ferent neutron and proton state densities an ex-
plicit two-component formulation of the exciton
model is inevitable.

Use of the one-component model also leads to
an unavoidable inconsistency in the state densi-

ties for the preequilibrium and the equilibrium
part. This deficiency is overcome naturally us-
ing the two-component formula for the densities
>f states with a fixed number of excitons, but
this again implies use of the two-component
model.

Two—component exciton model

The model, we report herein, is a natural
extension of the exciton model to a system of two
distinguishable components, as proposed by Dobes
and Betak /4/. States are <clssified according
to the reaction stage number N and to the number

of proton holes hﬂ. It is important to note that,
while for N only the condition N>0 holds, the
-values of h; are limited to Oshﬂ<N. Using this

the equilibration of the composite
depicted on a two dimensional

representation
nucleus can be

plot, as shown in Fig.l for the case of a neutron
projectile, The master equation describing
equilibration of the two-component system is

written
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Fig.l. Schematic diagram of'the equilibration of
the composite nucleus formed in the neutron in-
duced reaction. Different substages are denoted
with p vr hyr Do and h;. The arrows are labeled
with the type of the interacting nucleons.
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Here, P is a population of N, h, substage at time
t, and A are internal transition rates. Two
superscripts indicate a change in N and h, while
the subscripts stand for the types of both inter-
acting nucleons. The emission rates W mgylh”)are
written in analogy to the one-component exciton
model, having one-gas state densities replaced by

the two-gas quantities.

To facilitate the solution of the master
equation we transform the two-dimensional popu-
lation matrix into a vector. We note, that be-

cause of hg<N, the population matrix in Eq.l is
in fact triangular. Accordingly, we can ascribe
a running index 'j' to each substage starting



from the top of Fig.l and enumerating along sub-
sequent rows from the left to the right. The new

index 'j' is related to N and hy by a simple re-
lation

j = N(N-1)/2 + h + 1, (2)
and 1is sufficient to specify a substage com-

pletely. N and h; may be obtained for each 'j'
through the expressions

N = INT(0.5 + V 23 - 1.75 ) (3)

and

h_ =3 - N(N-1)/2 (4)
where INT stands for the Entier function. This

way, the Eg.l has been transformed into the
standard system of linear differential equations.
To specify it, we have to write the matrix in
Eq.l in terms of 'j'. Let us note, that in the
(N,h;) representation the following 'selection
rules' for the internal transitions hold

AN=-1; ah;=-1, 0
AN= 0; Ahp=1,-1
AN=1; Ah‘"= 0,1

with boundary conditions N>0 and Oshﬂ<N. Trans-
forming these selection rules to the j represen-
tation, it is easy to show that a given substage
j is coupled to the following i substages

i=j—-N+1 and i=j-N through AN=-1 transitions with
boundary condition (N-2)(N-1)/2
< i g N(N-1)/2

through AN=0 transitions with
the boundary condition N(N-1)/2
< i g N(N+1)/2

i=j+N and i=j+N+1l through the AN=1 transitions

with no boundary condition.

i=j+l and i=j-1

In Fig.2 we show that the two-component master
equation indexed with j nicely links to the one-
component version. To elucidate this feature,
the thick horizontal and vertical lines are drawn
to separate the reaction stages. Clearly, master
equation matrix remains tri-diagonal in the N
representation, which corresponds to the one-
component model.

Internal transition rates.

Assuming two-body interaction, there are 18
diagrams that contribute to internal transitions
(Fig.3). Following Fermi's Golden Rule, a tran-
sition rate X is proportional to average
squared matrix element and to the density of
final accessible states.

The density of accessible states 1is calcu-
lated as follows. First, the system is split
into the interacting part, which contains the
excitons taking part in the interaction, and the
passive part that behaves like a spectator. The
probability of finding the required interacting
part with energy e is given by the ratio of the
state density of the passive part at energy E-¢
to the density of states for the whole system at
energy E. The total number of interacting config-
urations 1is obtained as a product of the above
probability and the density of states for the
interacting part. To obtain the density of acces-
sible states, we multiply the above with the den-

sity of the interacting part in the final state
and integrate over € from 0 to E. This simple
procedure requires performing one numerical inte-
gration 1if the state densities are given in a
tabulated form, whereas analytical expressions
are straightforward if state densities are given
in terms of the energy polynomials. For example,
the density of accessible states associated with
the third diagram reads
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Fig.2. Schematic representation of the j-indexed

master equation. Thick lines separate different
stages of the equilibration process. Off-diagonal
elements represent gain of the flux from other
substages, while diagonal elements L are fespon-
sible for the loss of the flux due to the coupl-
ing to other substages and to the open channels.
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Similar expressions for the remaining 17 diagrams
are easily obtainable applying the above proce-
dure.

The transition rates are obtained by apply-

ing the Golden Rule and summing the appropriate
diagrams of Fig.3.

The analytical expressions for the accessi-
ble state densities are obtained using the two-
component formula for state densities /5/

pv~hv % ~hv gy
WEp b o on e 59 G €D 0 gy (g,

P, lhvl P, lh' 1(n-1)1

state densities for

Note that single particle N
holes g are differen-

particles g and for
tiated. Energy shift S contains the Pauli cor-
rection and, eventually, pairing shift. In Eq.6
we include also Heaviside function 6 (E-T), which
excludes states below the threshold T for a given
exciton configuration, thus accounting for the
most important effect of the shell structure.
Using Eqg.6 expressions analogous to Eq.5 can be
integrated analytically.
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Fig.3. Diagrams illustrating internuclear transi-

tions
acting particles
upward
is indicated.

in the two-component exciton model. Inter-
(holes)
(downward) arrows, and their nucleon type
Vertical lines stand for the pas-

are represented by

sive excitons. The diagrams are enumerated to fa-

cilitate reference.

Equilibration of a composite nucleus

Flow of the flux through particular sub-
stages of the composite system may be
qualitatively discussed on the basis of the tran-
sition rates, without solving master equation.
Assuming all matrix elements equal, discussion
can be carried out in terms of the accessible
state densities.

Accessible state densities were obtained,
performing numerical integration of Egq.5, in
which microscopically calculated state densities
were used. Microscopic calculations were per-—
formed according to the method described in
Refs.2 and 3 in the space of the shell-model or-
bitals as determined by Nix and M&ller /6/. No
explicit interactions between particles was as-
sumed. To simulate natural level width and con-
figuration mixing, a Gaussian strength
distribution was ascribed to each nuclear state.

To demonstrate clearly the effects of the

shell structure, we choose 90Zr, which is a magic
nucleus in respect to neutrons while protons
fill roughly half of the shell. Let us concen-
trate on the (2100) and (1011) configurations.
In Fig.4 several representative accessible state
densities, associated with the appropriate decay
processes (see Fig.3) of both configurations are
shown.

In the decay of (2100) configuration, cre-
ation of the proton particle-hole pair by a neu-
tron particle (diagram 3) is a leading process.
Creation of the neutron particle-hole pair (dia-

gram 5) becomes only important above 20 MeV of
excitation energy and is by factor of 2 less
probable. We note, that analogous transition

caused by the neutron hole (diagram 6) is an or-
der of magnitude weaker. The intersubstage tran-—
sitions are realized via diagram 9. Accessible
state density for this process is found to be ap-
proximately 10 times lower than for the leading
(exciton creating) diagrams. For the backward
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transitions (diagram 11) the same ratio exceeds
100.

In the case of the (1011) configuration only
most important transitions are shown in Fig.4.
Below 12 MeV of excitation energy the configura-
tion decays nearly exclusively via the proton
pair creation induced by the neutron particle
(diagram 3). Above this energy, also other
decay modes become possible. Accessible state
densities for these transitions differ from each
other by up to an order of magnitude.

In both cases strongest effect of the shell
structure is observed at low excitation energies.
Accessible state densities reveal thresholds,
that are scattered over a broad energy range (be-
tween 4 and 14 MeV in the case of 1011 configura-
tion decay in 902r). 1In this low energy region,
one may thus expect strongly nonuniform flow of
the flux through different substages. In gen-
eral, due to the Pauli principle accessible state
densities for the unlike transitions are higher
than those for the like ones, Therefore, one ex-
pects that in any way formed composite system
will proceed to its equilibrium containing equal
number of proton and neutron degrees of freedom,
and that the main part of the flux will pass
through the substages laying in the middle of the
graph shown in Fig.l.

Let us now discuss the flow of the flux
through various substages during the
equilibration of the 90Zr excited to 18.5 MeV as
a result of the neutron absorption. We will take
into account only forward transitions, since neg-
lect of the backward and N=0 transitions is
fully justified for the first stages of the
equilibration chain. The initial configuration
(1000) may decay to (2100) and to (1011]) sub-
stages. Assuming the decay proportional to the
state densities in the appropriate substage we
find that 33% of the flux will go to the (2100)
substage, while the population of the (10l1l1) sub-
stage will be twice as high (67%). The (2100)
substage will decay predominantly to the (2111)
substage (83%), and only with 17% to the (3200).
The second N=2 substage (10l11l) will populate
(2111) and (1022) nearly equally (53% and 47% re-
spectively). Thus we expect following partition
of the flux between 3 substages with N=3: 6% for
(3200), 63% for (2111),and 31% for (1022). This
confirms our predictions of nonuniform population
probability for the different substages of a
given reaction stage. In this particular case,
we may expect enhanced proton emission compared
to the predictions of the one-component model.

Conclusions

The reformulation of the two-component exc-
iton model presented in this paper consists in
the introduction of the microscopically calcu-
lated densities of gquasiparticle states, and
transformation of the master equation to the form
in which it can be easily solved using standard
numerical methods.

Analysing transition rates for the decay of
the initial stages of the composite nucleus we
have shown that, due to the shell structure, a
nonuniform flow of the flux through different
substages is expected.

It has been found that the leading decay
mode is the creation of the particle-hole pair of
a given nucleon type by a particle of the oppo-
site nucleon type (unlike-type interaction).

This implies that a system, during its
equilibration, will tend to populate mostly sub-
stages with not too different number of neutron-
and proton-type excitons. In addition, it turned
out that transitions induced by the holes are
strongly suppressed, due to the low density of
the single particle states below the Fermi en-
ergy.
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Fig.4. Accessible state densities for the decay
of (2100) and (1011) substages in 90Zr as a func-
tion of excitation energy. Curves are denoted by
numbers, which relate them to the appropriate di-
agrams of Fig.3.
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